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A class of uniform pseudorandom number generators is proposed for modeling and simulations on
massively parallel computers. The algorithm is simple, nonrecursive, and is easily transported to serial
or vector computers. We have tested the procedure for uniformity, independence, and correlations by
several methods. Related, less complex sequences passed some of these tests well enough; however,
inadequacies were revealed by tests for correlations and in an interesting application, namely, annealing
from an initial lattice that is mechanically unstable. In the latter case, initial velocities chosen by a ran-
dom number generator that is not sufficiently random lead quickly to unphysical regularity in grain
structure. The new class of generators passes this dynamical diagnostic for unwanted correlations.

PACS number(s): 02.70. —c, 03.20.+1i, 05.40.+j, 64.70.Dv

I. INTRODUCTION

The use of pseudorandom number generators in molec-
ular dynamics (MD), where the Newtonian equations of
motion of millions of atoms can be integrated on modern
massively parallel computers, is restricted mainly to the
initialization of the many-body trajectory. N atoms are
placed at, or near, perfect lattice sites and typically given
velocities selected from a Maxwellian-Boltzmann distri-
bution (Gaussian). This can be achieved by selecting a
pair of random numbers from a uniform distribution and
then applying the Box-Muller transformation [1] to ob-
tain two Gaussian-distributed random numbers. The
problem of initializing the velocities thus reduces to gen-
erating a sequence of uniformly distributed random num-
bers. Stated more precisely, one needs to generate on the
computer “a nonrandom, deterministic sequence of num-
bers x,,x,,..., which is supposed to resemble a se-
quence of independent, random samples from the uni-
form probability distribution on the interval 0<x; <1”
[2]. A number of such procedures are described in the
excellent book, Numerical Recipes [3]. Most of these
methods are recursive, employing the relationship [4(a)],

X 1= {Mx;+a}, (1)

where {y} is the fractional part of y, M > 1 is an integer,
and a is an ‘‘irrational” number in the interval (0,1).
(Since real numbers are represented on a computer by a
finite number of bits, i.e., machine precision, the term ir-
rational must be taken with a grain of salt. Also, the
proper choice of M and a is an arcane subject in and of
itself [3,4(a)]. Recursive procedures are fine for serial
computers, but are not very convenient for massively
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parallel machines. If we associate a different random
number with each parallel processor, which in simplified
terms could represent an individual atom, then ideally, a
parallel pseudorandom number generator should produce
a number on each processor simultaneously and indepen-
dently (leading to a velocity component after transforma-
tion). Parallel implementation of Eq. (1) for initialization
of velocities would be too time consuming if splitting was
used, since all L processors would have to execute Eq. (1)
L times (where L might be of the order 10%), discarding
all numbers x i j > i, where i is the processor number. An
alternative would be to use the method proposed by
Frederickson et al. [5] and further developed by Percus
and Kalos [6]. In the latter method, each processor
would have its own generator and no random numbers
are discarded. Once an array of processors has been
given initial random numbers, the sequence given in Eq.
(1) could indeed be used, for example, in a parallel Monte
Carlo (MC) procedure, where now the index i—i+1
would represent the increment in MC “time” (step num-
ber) for a given processor (atom).

Why worry about the initialization of an MD trajecto-
ry, when Lyapunov instability [7] guarantees that the ini-
tial state is supposedly forgotten within a few collision
times? The answer is twofold. First, one would like to be
able to specify initial conditions on any type of comput-
ing environment and be able to check, to within machine
accuracy, the different MD simulation algorithms against
each other. One would hope, moreover, to achieve this
objective of randomness for the initial state with a simple
and straightforward (nonrecursive) algorithm. Secondly,
we shall give an example in this paper where the initial
state is not forgotten within a few collision times, and
show that a generator that is insufficiently random can
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lead to unphysical results.

In this paper, we discuss three increasingly complex
candidates for uniform random sequences: (i} the Weyl
sequence, which is well known to pass the uniformity test
but has serious correlations; (ii) the nested Weyl sequence
(NWS), which is uniform and again fails the test for
correlations as well as the annealing test; and (iii) an al-
ternative sequence, the shuffied nested Weyl sequence
(SNWS), which passes all the tests and which we propose
as a portable pseudorandom number generator for paral-
lel computing applications. We give examples of anneal-
ing from the unstable square lattice in two dimensions
(2D) for the latter two sequences, using the grain map of
local bond orientation as a visual diagnostic. For each of
the sequences, Weyl, NWS, and SNWS, we give sample
results from the Monkey Test used to test for correla-

II. METHODS

Two obvious tests to be made to see if a proposed algo-
rithm for a pseudorandom number generator accom-
plishes its objectives are (i) computing the moments of the
sequence of supposedly uniform numbers on the interval
(0,1) and (ii) computing the correlation function to deter-
mine whether or not the sequence is independent. If the
sequence is composed of N numbers uniform on the inter-
val (0,1), then the mth moment should be given by

XN(m)
N2

1
m+1

, (2)

(xmy=L 3 xm
x _.ﬁ,élx"_

where —1<yy(m) <1 for all N is indicative of a suitably
uniform sequence. Likewise, the correlation function of
lag k for N independent numbers should be given by

N Oy(k)
PN(k>0)=%igl(xi“(x>N)(xi+k"<x)N)= ;1/2 ’

where —1<60y(k) <1 for all N is indicative of a suitably
uncorrelated sequence. In these tests, one is limited only
by the amount of work one is willing to do, namely, the
number of moments and lags to be computed. In addi-
tion, a whole battery of empirical tests are available for
testing supposedly random sequences [4]. For detecting
correlations among non-neighboring terms in the pseu-
dorandom number sequence, we chose Marsaglia’s Mon-
key Test [8]. In Percus and Whitlock [9], the complete
mathematical development of the Monkey Test is de-
scribed. It can be summarized as follows. Given a se-
quence of length N consisting of m different symbols, let
£, be the number of occurrences of a subsequence of r
given symbols. Let E{£,] be the expected value of &,,
then

E(g,)=Y="*1 @

mr

Alternatively, these tests for uniformity and correla-
tion can be represented visually by plotting a random se-
quence vs its kth lag as pairs of points (x;,x; . ) on the
unit square, (0,1)X(0,1). If a sequence is uniform and
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uncorrelated, and therefore truly pseudorandom, then the
unit square will be uniformly covered with no apparent
clustering or striping. Color may also be employed by as-
signing a rainbow of colors to the processor numbers
i=1,...,L, with deep blue for i=1 to light green for
i=L /2, going up to bright red for i=L; in this case,
clustering or patterns of colors should not occur either.
We will show that even these more sophisticated visual
diagnostics are not always sufficiently reliable for detect-
ing hidden correlations. Furthermore, we will show that
annealing from an initial unstable crystal structure can
reveal otherwise hidden correlations in the “random”
number generator used to initialize velocities.

III. WEYL SEQUENCE

The Weyl sequence [10] is obtained for an arbitrary ir-
rational number a (such as {2172} =0.414. . .) by taking
the fractional parts,

X,={na}, (5)

for n=1,2,...,N. This is clearly an easily parallelizable
sequence, and Weyl and others have shown [2,10] that it
is uniform on the interval (0,1). Empirically, the first
hundred moments show that it is uniform. However, it is
not uncorrelated [10(b)]; for each lag (k=1:100), the
correlation function as defined in (3) is a constant in-
dependent of N. Furthermore, the Monkey Test for any
m shows substantial deviations from Eq. (4) [9]. Such ob-
vious correlations introduced into the initial velocities
would be unacceptable in MD simulations. Nevertheless,
the Weyl sequence leads naturally to the next level of
complexity, the nested Weyl sequence.

IV. NESTED WEYL SEQUENCE

The nested Weyl sequence (NWS), a natural extension
of the Weyl sequence, is defined forn=1,...,Nas

Y, ={nX,}={n{na}l} . (6)

The first hundred moments of the NWS show that it is
uniform, and the first hundred lags of its correlation
function reveal no unwanted correlations. The lag k=1
correlation plot, with a= {21/ 2], is plotted as a unit
square in Fig. 1. No obvious correlations appear in Fig.
1. When one views this plot on edge, one might imagine
seeing some very subtle herringbones, but there is no pat-
tern that is particularly striking.

On a Connection Machine (CM-2), we simulated two-
dimensional (2D) annealing of a polycrystalline Lennard-
Jones spline [11] (LY spline) system using MD. The NWS
was used as uniformly distributed input to the Box-
Muller [1] transformation to obtain the initial Maxwell-
Boltzmann velocities. On the CM-2, atoms are laid out
on an Eulerian grid, that is, a fixed rectangular paral-
lelepiped array of boxes, with a maximum number of pi-
geonholes provided in each box for occupancy by the par-
ticles. Motivation for this parallel data structure comes
from the fact that the serial communications among pi-
geonholes within a given Eulerian box is very rapid, while
neighboring communications among boxes is somewhat
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FIG. 1. Lag k=1 correlation plot (unit
square) for the NWS [Eq. (6)], generated from
the seed a={2'7?}. The order of the pairs
(Y;,Y;+y) is colored by a rainbow, where deep
blue is i =1, light green is near i =32 768, up
to bright red for i =L =65 536.

FIG. 2. Grain map [Egs. (7) and (8)] of
262 144 Lennard-Jones spline atoms in two di-
mensions (about 0.1 um on a side) at a time of
about one and one-half vibrational periods
after initialization from a square lattice (densi-
ty appropriate to zero pressure and one-fourth
of the melting temperature), with initial x and
y velocities chosen from Box-Muller transfor-
mation of two NWS, using {2!/2} and {3!/%} as
seeds. The grain-map rainbow corresponds to
deep blue for crystallites with triangular-lattice
bond angles (with x axis) near —30°, to light
green near 0°, up to bright red for +30°. Note
the unphysical regularity of diagonal stripes of
crystallites.
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less so, though considerably faster than general router
communications. The size of the boxes is such that only
nearest-neighbor communication among Eulerian boxes
is necessary in order to determine forces between a given
atom and another that falls within the range of interac-
tion. (For the LJ spline potential, depending on the den-
sity, one and occasionally two neighbor shells are includ-
ed in 2D.) In general, the data—coordinates, momenta,
forces, etc.—are laid out as (d + 1)-dimensional matrices,
where d is the number of Cartesian dimensions (2 or 3).
Consequently, the initial atomic coordinates (lattice sites)
are strongly correlated with the processor (box and pi-
geonhole) number.

While annealing can be done by melting a solid, and
then quenching the fluid into a glassy state, we chose to
accomplish a similar end result by placing atoms initially
on square-lattice sites. Since the square lattice is mechan-
ically unstable at any density for central-force interac-
tions (like the LJ spline), we anticipated a rapid, homo-
geneous nucleation of triangular-lattice crystallites,
which would then coalesce into larger and larger grains.
Because the excess potential energy of the square lattice
is sufficient to melt the sample, even when the initial ve-
locities are nearly zero, we employ a homogeneous, deter-
ministic, feedback mechanism (the so-called Nosé-
Hoover thermostated equations of motion [12]) to keep
the temperature at about one-fourth the melting tempera-
ture for at least 15 or so vibrational periods, before
switching to Newtonian, constant-energy equations of
motion.

In order to display the annealing process, we color
each atom according to its local nearest-neighbor bond
environment, assuming hexagonal symmetry, by means of
the following algorithm [13]. Each atom i is arbitrarily
defined to form a bond with its neighbor j whenever the
distance between them (7;;) is less than 1.1 times the
zero-temperature, zero-pressure nearest-neighbor dis-
tance r, (the minimum of the LJ potential). The bond an-
gle with the x axis is then computed according to

S
6;;=cos , (7)
7

whence the sixfold symmetric grain color is obtained
from the sums over neighbors (w; =1 when r; <1.1ry;
otherwise, w;; =0):
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1
(cos66, ) = . S, w;;cos66;; ,

=%
(sin6,) =1 S wy;sin66;;
i w “~ i ij »
J*i (o
2 2 &)
w= |3 w,-jcos66,-j] + |3 w;sin66;; |
j*i j*Ei
60, =cos ™ '(cos66; ) .
A color rainbow can be applied such that §,=—30° is

deep blue, continuously up to light green for 6, =0°, and
to bright red for 6, = +30°.

In Fig. 2, the grain map for a NWS-generated velocity
distribution is shown at a time of roughly one and a half
vibrational periods after initialization of 5122=262 144
atoms on a square lattice. The density was chosen to be
close to that of a zero-pressure triangular lattice at one-
fourth the melting temperature. Very clear diagonal
stripes of correlated triangular crystallites have begun to
appear. One can only conclude that since atoms are laid
out in regular rows from bottom to top, corresponding to
square lattice sites and also parallel processor number,
the resulting velocities from the NWS retain some spatial
correlation that is clearly undesirable on physical
grounds. To give some perspective on the scale of this
grain map, usual MD simulations of about 1000 atoms
are smaller than the thickness of these stripes, so that the
regularity would not be detectable; the sidelength here
corresponds to about 0.1 yum.

Subsequent examination of a movie of higher-order
correlation plots (i.e., lags kK =1:1000) revealed a small
percentage ( <10%) of bizarre-looking frames for the
NWS, such as is shown in Figs. 3(a) and 3(b) for k =121
and 770, respectively. (The particular values of k whose
correlation plots are strange depend on the seed, a, which
is {2!7?} in these plots.) The pairs of random numbers
shown in Fig. 3(b) were used in the Box-Muller scheme to
generate pairs of Gaussian random numbers. Figure 4
shows that the resulting pairs, plotted against each other,
are high correlated. On the other hand, plots for most
values of k resemble the unit square in Fig. 1, showing
that this occasional needle-in-the-haystack approach for
determining correlations in a sequence is not very reli-
able. We have used the Monkey Test for sequences of
length N=10000, m =10, and r =3, where the expected
value of £,=9.998. Table I gives the averaged results for

TABLE I. Results of the Monkey Test for the nested Weyl sequence, N=10000, m =10, r =3, and
(a) a={33'7%}, E{£;} =9.998 and (b) a={2!7?}, E{£,}=9.998.

(a)

(b)

Sequences 0,1,7 1,9,8 3,4,8 1,6,2
Observed 49.57 0.00 0.30 0.00
Error 0.62 0.00 0.52 0.00
Sequences 0,1,7 1,9,8 3,4,8 1,6,2
Observed 0.00 0.00 0.00 0.00
Error 0.00 0.00 0.00 0.00

2,1,1 7,7,2 6,3,9 4,0,1 0,9,5
0.00 49.63 0.00 50.11 0.00
0.00 0.71 0.00 0.63 0.00
2,1,1 7,7,2 6,3,9 4,0,1 0,9,5
0.00 0.00 36.20 0.00 12.88
0.00 0.00 0.59 0.00 0.39
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FIG. 3. Correlation plots (atypical) for
NWS [Eq. (6)], generated from seed a= {2!/?},
L =65536: (a) lag k=121, (b) lag k=770. The
strange patterns for these rare lags are in sharp
contrast to the usual case shown in Fig. 1.

(b)
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FIG. 4. Plot of y, vs y, as generated by the
Box-Muller scheme [1] with x; and x; 477, used
in the calculation shown in Fig. 3(b).

FIG. 5. Lag k=770 (not atypical) correla-
tion plot for the SNWS [Eq. (9)], generated
from seed &= {2'/2}, M =L =65 536.
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TABLE II. Results of the monkey test for the nested Weyl Sequence, N =2X 10%, m =100, r=3, and

a={2'2}, E{£}=2.00.

Sequences  34,80,90 3,57,27 56,1,72 87,87,48 62,47,90 91,17,85 68,33,67 96,12,48
Observed 242 0.57 0.37 1.72 1.94 0.28 1.02 0.58
Error 0.86 0.33 0.23 0.72 0.76 0.17 0.41 0.32

100 replications of the Monkey Test for several triplets of
numbers in the range (0,9). Table I(a) shows the results
for the NWS with the seed {33'/%} and Table I(b) shows
the results for the seed {2!72}. The results are startling in
both cases, because only a few, favored triplets of num-
bers are observed at all in the sequence of 10000 num-
bers. The Monkey Test was also done for sequences of
length N=2X 10%, m =100, and r=3. In the case, the
expected value of the £; is 2.00. The averaged results of
100 replications are shown in Table II. At first glance the
results do not look completely unacceptable; however,
the large errors are suspicious and further investigation
shows very correlated results. The first 20 replications of
the test found no occurrences of any of the triplets stud-
ied. When one of the triplets did occur in an individual
sequence, it occurred repeatedly, 10 to 60 times. This
highly unrandom behavior is reflected in the large errors.
Since the NWS shows severe correlation even for r =3, it
is not surprising that spatial correlations of velocity and
processor number are observed in the annealing simula-
tion. We therefore propose a new sequence for generat-
ing uniform pseudorandom numbers.

V. SHUFFLED NESTED WEYL SEQUENCE
The unwanted correlation can be removed by first
“randomizing” the processor number wv,, for
n=1,...,L so that v, lies in the interval (;,M+1),
where M >>1 is a large integer. multiplier (not smaller
than the number of processor L by more than an order of
magnitude, however). Then Eq. (6) is applied:

v,=MY,+i=M{n{nal}+1,
Z,={vp{vyal} .

9)

Such a procedure is referred to as “shuffling” and has
been shown [14] to improve the statistical properties of a
generator in some cases. The new generator is called,
therefore, the shuffled nested Weyl sequence (SNWS).

A lag k=770 correlation plot for the SNWS, unlike
that for the NWS in Fig. 3(b), is virtually indistinguish-
able (at least in its lack of features) from all other lags,

and is shown in Fig. 5. Furthermore, the Monkey Test
was carried out for the same set of symbols as the NWS,
but the results are significantly different (see Table III).
For the first case, with N=10000, m =10, and r=3, the
observed values of &; after 100 replications agree reason-
ably well with the expected value of 9.998. In the second
case, where N=2X10%, m =100, and =3, the agree-
ment with the expected value of £;=2.00 is excellent.
The SNWS eliminated the spatial correlation of velocities
in annealing from the unstable square lattice, as shown in
Fig. 6; had the Monkey Test been performed first, these
results might have been anticipated. The qualitative uni-
form features of homogeneous nucleation are in stark
contrast with Fig. 2. The annealing results using SNWS
are indistinguishable from those obtained from the ran-
dom number generator implemented by Thinking
Machines Corporation on the CM-2 (Wolfram’s “Rule
30” cellular automaton [15]). When the new sequence is
used for an even larger system (2.4 million atoms) in an
annealing simulation, still no undesirable stripping is
seen.

In our experience, the apparent length of the sequence
is limited only by the floating-point word length. The
multiplier is some large positive integer greater than the
number of atoms (or the number of random numbers be-
ing sampled at a time). The seed need only be the frac-
tional part of such numbers as the square root of any in-
teger that is not a perfect square (2, 3, 5, etc.) or an irra-
tional number (i.e., having a nontrivial fractional part)
such as the base of the natural logarithms or 7. No sensi-
tivity to the seed, within these guidelines at least, has
been observed in practice. Finally, to illustrate the algo-
rithm, we exhibit below some generic pseudocode
(RANDY) for the SNWS:

mult = 1234567
seed = mod (sqrt (2.), 1.)
do n= 1, number
X (n)=mod (n*mod (n *seed,1.) ,1.)* mult+0.5

x (n)=mod (x(n)*mod(x(n)*seed,1.),1.)
end do

TABLE III. Results of the Monkey Test for the shuffled nested Weyl sequence, (a) N= 10000,
m=10, r=3, and a={2"?}, E{£;}=9.998 and (b) N=2X10% m=100, r=3, and a={2'?},
E{&}=2.00.

(a)

Sequences 0,1,7 1,9,8 34,8 1,6,2 2,1,1 7,72 6,3,9 4,0,1 0,9,5
Observed 10.66 9.57 10.34 10.29 9.74 10.37 10.52 9.92 10.02

Error 0.31 0.30 0.30 0.35 0.32 0.32 0.35 0.32 0.32
(®)

Sequences 34,80,90 3,57,27 56,1,72 87,87,48 62,47,90 91,17,85 68,33,67 96,12,48

Observed 2.07 1.67 2.25 2.20 2.17 2.14 2.00 2.19

Error 0.15 0.13 0.14 0.15 0.15 0.16 0.14 0.15
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It has been pointed out that the Weyl sequence is
characterized by constant first differences, that is,

X,—X,_=a—j, n=12,..., j=0,1,

while the nested Weyl sequence is characterized by con-
stant second differences,

Yn+1_2Yn_anl={2a}_j ’
n=12,..., j=—10,+1,+2.

As we have noted, the correlation function for the latter
shows no peculiarity, and the correlation plots show pat-
terns only at infrequent intervals.

VI. CONCLUSIONS

The shuffled nested Weyl sequence (SNWS), which we
propose for generating uniform pseudorandom numbers,
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FIG. 6. Grain map for annealing from a
square lattice (as in Fig. 2), using initial veloci-
ties obtained from the SNWS [Egs. (9)], using
{2'?} and {3'?} as seeds and M=L
=262 144. Note the absence of regularity in
the grain map, in contrast with Fig. 2.

a natural extension of the Weyl sequence and the nested
Weyl sequence (NWS), passes both uniformity and some
correlation tests. Moreover, it alone of the three passes
an even more stringent dynamical test, namely annealing
from an initial unstable crystal lattice. The result is a
simple two-line computer algorithm.
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FIG. 1. Lag k=1 correlation plot (unit
square) for the NWS [Eq. (6)], generated from
the seed a={2'?}. The order of the pairs
(Y;,Y; 1) is colored by a rainbow, where deep
blue is i =1, light green is near i =32 768, up
to bright red for i =L =65 536.



FIG. 2. Grain map [Egs. (7) and (8)] of
262 144 Lennard-Jones spline atoms in two di-
mensions (about 0.1 um on a side) at a time of
about one and one-half vibrational periods
after initialization from a square lattice (densi-
ty appropriate to zero pressure and one-fourth
of the melting temperature), with initial x and
y velocities chosen from Box-Muller transfor-
mation of two NWS, using {2'/2] and [3'?] as
seeds. The grain-map rainbow corresponds to
deep blue for crystallites with triangular-lattice
bond angles (with x axis) near —30°, to light
green near 0°, up to bright red for +30°. Note
the unphysical regularity of diagonal stripes of
crystallites.



FIG. 3. Correlation plots (atypical) for
NWS [Eq. (6)], generated from seed e={2'"?},
L =65536: (a) lag k =121, (b) lag k =770. The
strange patterns for these rare lags are in sharp
contrast to the usual case shown in Fig. 1.
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FIG. 4. Plot of y, vs y, as generated by the
Box-Muller scheme [1] with x; and x; ; 770 used
in the calculation shown in Fig. 3(b).




FIG. 5. Lag k=770 (not atypical) correla-
tion plot for the SNWS [Eq. (9)], generated
from seed a={2'?}, M =L =65 536.




FIG. 6. Grain map for annealing from a
square lattice (as in Fig. 2), using initial veloci-
ties obtained from the SNWS [Egs. (9)], using
{2'2] and [3'?] as seeds and M=L
=262 144. Note the absence of regularity in
the grain map, in contrast with Fig. 2.



